The selective catalytic reduction of NO over Ce0.3TiOx-supported metal oxide catalysts.

نویسندگان

  • Zhichen Duan
  • Jian Liu
  • Juan Shi
  • Zhen Zhao
  • Yuechang Wei
  • Xiao Zhang
  • Guiyuan Jiang
  • Aijun Duan
چکیده

A Ce0.3TiOx oxide carrier was synthesized via a sol-gel process, and Ce0.3TiOx supported metal (M=Cd, Mn, Fe, W, Mo) oxide catalysts were prepared by the method of incipient-wetness impregnation. The catalysts were characterized by means of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and Temperature-programmed reduction with H2 (H2-TPR). The catalytic activities for de-NOx were evaluated by the NH3-SCR reaction. Among all the catalysts tested, the 2wt.% Cd/Ce0.3TiOx catalyst exhibited the best NH3-SCR performance, with a wide temperature window of 250-450°C for NO conversion above 90%. Moreover, the catalyst showed N2 selectivity greater than 99% from 200 to 450°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT

Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...

متن کامل

Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...

متن کامل

Catalytic and Non-catalytic Conversion of Methane to C2 Hydrocarbons in a Low Temperature Plasma

The direct conversion of methane to C2 hydrocarbons, in a quartz tube reactor enforced by a DC corona discharge, was investigated at atmospheric pressure. The process was carried out in the presence of metal oxide catalysts of Mn/W/SiO2, Mn/W/SiO2 (tetraethyl orthosilicate, TEOS), and Mn/W/CNT (supported on carbon nanotubes). The total yield to C2 hydrocarbons in the presence of metal oxide cat...

متن کامل

Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for t...

متن کامل

The Selective Catalytic Reduction of NOx with NH3 over Titania Supported Rhenium Oxide Catalysts

Titania supported vanadium oxide catalysts have been demonstrated to be very efficient catalysts for the selective reduction of NOx with NH3 and have found widespread industrial application for the control of NOx emissions from stationary sources (1). Characterization studies have demonstrated that supported vanadium oxide catalysts consist of a two-dimensional metal oxide overlayer on the oxid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2018